## B. Math. I Year First Semester 2000 - 2001 Final Exam / Analysis Time: 2 Hours

1. a) Find  $\lim_{n\to\infty} \frac{e^n+5}{e^n+n^2}$ .

b) Find 
$$\lim_{n\to\infty} n \log\left(1+\frac{1}{n}\right)$$
. [5+5]

- 2. Decide if the following statements are true or false. If true, give a proof, if false, give a counter example:
  - a)  $a_n$ 's are real numbers, such that  $\sum_{n=1}^{\infty} a_n$  is convergent. Then  $\sum_{n=1}^{\infty} a_n^2$  is convergent.
  - b)  $a_n \ge 0$  and  $\sum_{n=1}^{\infty} a_n$  is convergent. Then  $\sum_{n=1}^{\infty} a_n^2$  is convergent. [5+5]
- 3. If |x| < 1, prove that  $\sum_{n=1}^{\infty} n^3 x^{n^2}$  is convergent. [5]
- 4. (a) Complete the following sentence:  $f: I \to \mathbb{R}$ , f is uniformly continuous on I iff ......
  - b) Let  $I = [1, \infty)$  and  $f(x) = \frac{1}{x}$ . Prove that f is uniformly continuous on I.
- 5. f is a  $C^1$ -function on  $[1, \infty)$ . f(1) = 1 and f is increasing. If  $f'(x) \leq \frac{1}{x^2}$ , show that  $\lim_{x \to \infty} f(x)$  exists. [10]
- 6. Let  $q_1, q_2, ...$  be an enumeration of the rationals on [0, 1]. Define f on [0, 1] by  $f(q_n) = \frac{1}{n}$  and f(x) = 1 if x is irrational.

  Is f Riemann integrable on [0, 1]? Justify your answer. [10]
- 7. Let f be a  $C^1$ -function on  $\mathbb{R}$ . f(0) = 0 and f'(q) = 1 if q is rational. Find f.
- 8. Let  $f(x) = xe^{x^2}$ . Find the second Taylor polynomial around a = 0. Using this find an approximate value of f(0.01). Estimate the maximum error involved in this method. [20]
- 9. Let  $f(x) = \int_{0}^{e^{x}} e^{t^{2}} dt$ . Find f'(x) [10]